二阶魔方
|
|
||||
|
|
二阶魔方(英语:Pocket Cube)又称口袋魔方、迷你魔方、小魔方、冰块魔方,为2×2×2的立方体结构。本身只有8个角块,没有其他结构的方块。结构与三阶魔方相近, 可以利用复原三阶魔方的公式进行复原。
发展历史
1974年,鲁比克教授发明了第一个魔方,即3×3×3立方体结构的“三阶魔方”(当时称作Magic Cube),并在1975年获得匈牙利专利号HU170062,但没有申请国际专利。第一批三阶魔方于1977年在布达佩斯的玩具店贩售。与Nichols的魔方不同,鲁比克教授的零件是像卡榫一般互相咬合在一起,不容易因为外力而分开,而且可以以任何材质制作。
1979年九月,Ideal Toys公司将魔方带至全世界,并于1980年一、二月在伦敦、巴黎和美国的国际玩具博览会亮相。
展出之后,Ideal Toys公司将魔方的名称改为Rubik's Cube,1980年五月,第一批魔方在匈牙利出口。
魔方广为大众喜爱是在1980年代。从1980年到1982年,总共售出了将近200万个魔方。据估计,1980年代中期,全世界有五分之一的人在玩魔方。
由于魔方的巨大商机,1983年鲁比克教授和他的合伙人一同开发了二阶和四阶魔方。并于1986年制造了五阶魔方。
8个角块的位置均可进行任意互换(8!种状态),如果以一个角块不动作为参考角块,其他7个角块都能任意转换方向(即37种状态)(注:这里指的转换方向,或者说翻转,是指一个角块从例如白-红-绿变成绿-白-红但是一次翻转一定会翻转到3个角块)。如果在空间中旋转则不计算方向不同而状态相同的魔方,实际上的准确状态数还应除以8。所以二阶魔方的总状态数为:
二阶魔方的最远复原距离(即最需要最多步骤复原的状态)为11次全旋转,或者14次普通旋转,此结果可以用计算机使用暴力穷举算法计算出。
复原方法
二阶魔方只有8个角块,可以利用“三阶魔方层先法”的一部分原理进行还原。
【参考来源:维基百科】
![](https://res.smzdm.com/pc/pc_library/dist/img/the-end.png)